A two-grid discretization method for decoupling systems of partial differential equations
نویسندگان
چکیده
In this paper, we propose a two-grid finite element method for solving coupled partial differential equations, e.g., the Schrödinger-type equation. With this method, the solution of the coupled equations on a fine grid is reduced to the solution of coupled equations on a much coarser grid together with the solution of decoupled equations on the fine grid. It is shown, both theoretically and numerically, that the resulting solution still achieves asymptotically optimal accuracy.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملA spline collocation method for integrating a class of chemical reactor equations
. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملHigh Accuracy Semi-implicit Spectral Deferred Correction Decoupling Methods for a Parabolic Two Domain Problem
A numerical approach to estimating solutions to coupled systems of equations is partitioned time stepping methods, an alternative to monolithic solution methods, recently studied in the context of fluid-fluid and fluid-structure interaction problems. Few analytical results of stability and convergence are available, and typically such methods have been limited to first order accuracy in terms o...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006